Written by David Guez & Jim Wilson
1 August 2022
As it is known, Hydrogen supplementation decreases oxidative stress and decreases inflammation. It is important to remember that inflammation causes a redirection of nutrients from accretion in meat, milk and wool towards liver anabolism37 and thus represents a non-negligible economic cost. Thus, it is expected that hydrogen supplementation, through drinking water for example, will improve meat, milk and wool production potential.
https://grdc.com.au/research/reports/report?id=3618
1. Chérif, M., Tirilly, Y. & Bélanger, R. R. Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions. European Journal of Plant Pathology 103, 255-264 (1997). 10.1023/a:1008691226213
2. Smith, G. S., Buwalda, J. G., Green, T. G. A. & Clark, C. J. Effect of oxygen supply and temperature at the root on the physiology of kiwifruit vines. New phytologist 113, 431-437 (1989). 10.1111/j.1469-8137.1989.tb00354.x
3. Wu, Q. et al. Understanding the mechanistic basis of ameliorating effects of hydrogen rich water on salinity tolerance in barley. Environmental and Experimental Botany 177, 104136 (2020). 10.1016/j.envexpbot.2020.104136
4. Xie, Y., Mao, Y., Lai, D., Zhang, W. & Shen, W. H(2) enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7, e49800 (2012). PMID:23185443; http://dx.doi.org/10.1371/journal.pone.0049800
5. Xie, Y. et al. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. Plant Physiol 165, 759-773 (2014). PMID:24733882; http://dx.doi.org/10.1104/pp.114.237925
6. Xie, Y. et al. Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso)flavonoids and antioxidant defence in Medicago sativa. Funct Plant Biol 42, 1141-1157 (2015). PMID:32480752; http://dx.doi.org/10.1071/FP15204
7. Wu, Q., Su, N., Cai, J., Shen, Z. & Cui, J. Hydrogen-rich water enhances cadmium tolerance in Chinese cabbage by reducing cadmium uptake and increasing antioxidant capacities. J Plant Physiol 175, 174-182 (2015). PMID:25543863; http://dx.doi.org/10.1016/j.jplph.2014.09.017
8. Su, N. et al. Hydrogen gas alleviates toxic effects of cadmium in Brassica campestris seedlings through up-regulation of the antioxidant capacities: Possible involvement of nitric oxide. Environ Pollut 251, 45-55 (2019). PMID:31071632; http://dx.doi.org/10.1016/j.envpol.2019.03.094
9. Dong, Z., Wu, L., Kettlewell, B., Caldwell, C. D. & Layzell, D. B. Hydrogen fertilization of soils–is this a benefit of legumes in rotation. Plant, Cell & Environment 26, 1875-1879 (2003). 10.1046/j.1365-3040.2003.01103.x
10. Li, L., Zeng, Y., Cheng, X. & Shen, W. The Applications of Molecular Hydrogen in Horticulture. Horticulturae 7, 513 (2021). 10.3390/horticulturae7110513
11. Li, M. et al. Hydrogen Fertilization Improves Yield and Quality of Cherry Tomatoes Compared to the Conventional Fertilizers. SSRN Electronic Journal (2022). 10.2139/ssrn.4064621
12. Zhang, Y. et al. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas. International Journal of Food Properties22, 1425-1438 (2019). 10.1080/10942912.2019.1651737
13. Li, L. et al. Preharvest application of hydrogen nanobubble water enhances strawberry flavor and consumer preferences. Food Chem 377, 131953 (2022). PMID:34973592; http://dx.doi.org/10.1016/j.foodchem.2021.131953
14. Zhang, X. et al. Transcriptome analysis of radish sprouts hypocotyls reveals the regulatory role of hydrogen-rich water in anthocyanin biosynthesis under UV-A. BMC Plant Biol 18, 227 (2018). PMID:30305047; http://dx.doi.org/10.1186/s12870-018-1449-4
15. Maimaiti, J. et al. Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environ Microbiol 9, 435-444 (2007). PMID:17222141; http://dx.doi.org/10.1111/j.1462-2920.2006.01155.x
16. Tamburini, E. et al. Bioaugmentation-Assisted Phytostabilisation of Abandoned Mine Sites in South West Sardinia. Bull Environ Contam Toxicol 98, 310-316 (2017). PMID:27385370; http://dx.doi.org/10.1007/s00128-016-1866-8
17. Jiang, F. et al. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63, 6421-6430 (2012). PMID:23136167; http://dx.doi.org/10.1093/jxb/ers301
18. Han, J. I. et al. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol193, 1183-1190 (2011). PMID:21183664; http://dx.doi.org/10.1128/JB.00925-10
19. Fisher, P. R., Appleton, J. & Pemberton, J. M. Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. J Bacteriol 135, 798-804 (1978). PMID:690076; http://dx.doi.org/10.1128/jb.135.3.798-804.1978
20. Vallaeys, T., Albino, L., Soulas, G., Wright, A. D. & Weightman, A. J. Isolation and characterization of a stable 2, 4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnology letters 20, 1073-1076 (1998).
21. Dong, Z. & Layzell, D. B. H2 oxidation, O2 uptake and CO2 fixation in hydrogen treated soils. Plant and soil 229, 1-12 (2001). 10.1023/A:1004810017490
22. Ishihara, G., Kawamoto, K., Komori, N. & Ishibashi, T. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential. Biochem Biophys Res Commun522, 965-970 (2020). PMID:31810604; http://dx.doi.org/10.1016/j.bbrc.2019.11.135
23. Zhang, X. et al. Hydrogen evolution and absorption phenomena in plasma membrane of higher plants. (2020). 10.1101/2020.01.07.896852
24. Gvozdjáková, A. et al. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Canadian Journal of Physiology and Pharmacology 98, 29-34 (2020). 10.1139/cjpp-2019-0281
25. Park, C. J. & Park, J. M. Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. Front Plant Sci 10, 399 (2019). PMID:31019523; http://dx.doi.org/10.3389/fpls.2019.00399
26. Reyes-Impellizzeri, S. & Moreno, A. A. The Endoplasmic Reticulum Role in the Plant Response to Abiotic Stress. Front Plant Sci 12, 755447 (2021). PMID:34868142; http://dx.doi.org/10.3389/fpls.2021.755447
27. Liu, J. X. & Howell, S. H. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22, 2930-2942 (2010). PMID:20876830; http://dx.doi.org/10.1105/tpc.110.078154
28. Kang, J., Lim, L. & Song, J. ATP induces protein folding, inhibits aggregation and antagonizes destabilization by effectively mediating water-protein-ion interactions, the heart of protein folding and aggregation. bioRxiv (2020). 10.1101/2020.06.21.163758
29. Ou, X. et al. ATP Can Efficiently Stabilize Protein through a Unique Mechanism. JACS Au 1, 1766-1777 (2021). PMID:34723279; http://dx.doi.org/10.1021/jacsau.1c00316
30. Chaucheyras-Durand, F., Masséglia, S., Fonty, G. & Forano, E. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Applied and environmental microbiology 76, 7931-7937 (2010). 10.1128/AEM.01784-10
31. Mitsumori, M. & Sun, W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australasian Journal of Animal Sciences 21, 144-154 (2008). 10.5713/ajas.2008.r01
32. Tseten, T., Sanjorjo, R. A., Kwon, M. & Kim, S.-W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. Journal of Microbiology and Biotechnology 32, 269-277 (2022). 10.4014/jmb.2202.02019
33. Ungerfeld, E. M. Metabolic hydrogen flows in rumen fermentation: principles and possibilities of interventions. Frontiers in Microbiology 589 (2020). 10.3389/fmicb.2020.00589
34. Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology 160, 1-22 (2010). 10.1016/j.anifeedsci.2010.07.002
35. Miettinen, H. & Huhtanen, P. Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. J Dairy Sci 79, 851-861 (1996). PMID:8792285; http://dx.doi.org/10.3168/jds.S0022-0302(96)76434-2
36. Scott, R. I. et al. The presence of oxygen in rumen liquor and its effects on methanogenesis. Journal of Applied Bacteriology 55, 143-149 (1983). 10.1111/j.1365-2672.1983.tb02658.x
37. Colditz, I. G. Effects of the immune system on metabolism: implications for production and disease resistance in livestock. Livestock Production Science 75, 257-268 (2002). 10.1016/s0301-6226(01)00320-7
Subscribe now to keep reading and get access to the full archive.